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Utilization of explainable machine learning to quantify the relative
roles of rain and pollutant concentration in wet deposition

Young—Hee Ryu!, Seung—Ki Min?

Yonsei University
POSTECH

Wet deposition is an important removal process of aerosols and soluble gases in the atmosphere, and so a solid
understanding of wet deposition is critical to accurately assess the influence of atmospheric trace elements (e.g., gases and
metals) on ecosystem and regulate them. The amount of wet deposition flux reaching the ground broadly depends on two
variables, rainfall amount and pollutant concentration in the atmosphere. Over East Asia, neither rainfall nor pollutant
concentration sufficiently explains the magnitude of wet deposition or its interannual variabibility. Therefore, this study
aims to unravel how rain and atmospheric pollutant concentrations contribute to wet deposition and its variation across
East Asia. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is used to simulate
17 spring seasons (2003-2019) air quality over East Asia. The model evaluation against Acid Deposition Monitoring
Network in East Asia (EANET) shows reasonable performance in reproducing sulfate, nitrate, and ammonium wet
deposition fluxes and their interannual variations. By taking the advantage of high spatially— and —temporally resolved
model outputs, we develop 21 random forest models for 21 EANET stations that predict 3—hourly wet deposition
flux; and employ the SHapley Additive exPlanations (SHAP) to understand the quantitative contributions of rain and
pollutant concentrations to wet deposition flux. Rain and liquid water path (grouped as rain, hereafter) is found be the
most influential variable for almost all stations as expected. However, the contribution of rain relative to that of pollutant
concentration (including surface concentration and total—column values) greatly varies across sites. For heavily polluted
stations, the contribution of rain is much larger (up to 4 times) than that of pollutant concentration. For remote stations,
the ratio is close to 1, meaning that rain and pollutant concentration are almost equally important. This study sheds

light on integrating an atmospheric model, a machine learning model, and an XAI method to better understand how

complicated physical processes are influenced by many variables in an atmospheric model.
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Nonlinear changes in urban heat island intensity, urban breeze
intensity, and urban air pollutant concentration with roof albedo:

Idealized ensemble simulations
Kyeongjoo Park, Jong—JinBaik

School of Earth and Environmental Sciences, Seoul National University

Understanding how the urban heat island (UHI) intensity and urban air quality change with roof albedo is important
to comprehensively assess cool-roof effects on health risks for urban residents. This study systematically examines

changes in UHI intensity andurban breeze circulation (UBC)with roof albedo and their effects on air pollutant dispersion
in urban areas. For this, idealized ensemble simulations with various roof albedos from 0.10 to 0.95 are conducted using

the Weather Research and Forecasting (WRF) model. As theroof albedo increases from 0.20 to 0.65, the daytime mean

UHI intensity, UBC intensity, and planetary boundary layer (PBL) height in the urban area decrease by 47%, 36%,
and 6%, respectively. Due to the decreases in the UBC intensity and PBL height in the urban area, the daytime mean
near—surface passive tracer concentration in the urban area increases by 115%. Changes in daytime UHI intensity, UBC

intensity, and near—surface tracer concentration in the urban area with roof albedo (a ) are nonlinear: For 0.10 < a <
0.80,the sensitivities of daytimeUHI intensity, UBC intensity, and near—surface tracer concentration in the urban area
to a overall increasewith increasing a . On the other hand, for a > 0.80, the daytime UHI intensity, UBC intensity, and

near—surface tracer concentration in the urban area do not exhibit significant changes with a

Key words: Roof albedo, Urban heat island, Urban breeze circulation, Pollutant dispersion, Cool roof
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The dynamics of concentration fluctuations within passive scalar
plumes in a turbulent neutral boundary layer
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Andreas Stohl*, Kerstin Stebel', Soon—Young Park>®

'NILU-Norwegian Institute for Air Research
“Safetec Nordic AS
“University of Lyon
“University of Vienna
“Daegu National University of Education

We investigate the concentration fluctuations of passive scalar plumes emitted from small, localised (point-like)
steady sources in a neutrally stratified turbulent boundary layer over a rough wall. The study utilises high—resolution
Large—Eddy Simulations for sources of varying sizes and heights. The numerical results, which show good agreement

with wind—tunnel studies, are used to estimate statistical indicators of the concentration field, including spectra and

moments up to the fourth order. These allow us to elucidate the mechanisms responsible for the production, transport,

and dissipation of concentration fluctuations, with a focus on the very near field, where the skewness is found to have
negative values—an aspect not previously highlighted. The Gamma probability density function is confirmed to be a
robust model for the one—point concentration at sufficiently large distances from the source. However, for ground—level
releases in a well-defined area around the plume centreline, the Gaussian distribution is found to be a better statistical
model. As recently demonstrated by laboratory results, for elevated releases, the peak and shape of the pre—multiplied
scalar spectra are confirmed to be independent of the crosswind location for a given downwind distance. Using a
stochastic model and theoretical arguments, we demonstrate that this is due to the concentration spectra being directly
shaped by the transverse and vertical velocity components governing the meandering of the plume. Finally, we investigate
the intermittency factor, i.e. the probability of non—zero concentration, and analyse its variability depending on the

o]
=

thresholds adopted for its definition.
Key words: Large Eddy Simulation, concentration fluctuation, neutral boundary layer, high—order statistics
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